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posed new score function and the proposed new accuracy function of IVIFVs for overcom-

ing the drawbacks of Wang and Chen’s MADM method (2017), which has the drawbacks

ffévr\?;ﬁialued intuitionistic fuzzy sets that the preference order (PO) of alternatives cannot be distinguished in some cases and
IVIFVs it gets an infinite number of solutions of the optimal weights of attributes when the sum-
LP methodology mation values of some columns in the transformed decision matrix (TDM) are the same,
MADM such that it obtains different POs of alternatives.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Some researchers have presented multiple attribute decision making (MADM) methods [2-7,22,24,26,27| using interval-
valued intuitionistic fuzzy sets (IVIFSs) [1]. In [2], Bai proposed an interval-valued intuitionistic fuzzy (IVIF) TOPSIS method
to deal with MADM problems based on a score function. In [7], Garg presented a generalized improved score function
and proposed a multi-criteria decision making method with unknown attribute weights under interval-valued intuitionistic
fuzzy (IVIF) environments. In [22], Tu and Chen presented two score functions for IVIFVs for dealing with multi-criteria
decision making analysis problems. In [24], Wang and Chen proposed a MADM method using the linear programming (LP)
methodology [4,21] and a score function of IVIFVs. In [26], Wang et al. presented a MADM method with IVIF assessments
and incomplete weights. In [27], Xu presented methods for aggregating IVIF information for MADM.

However, Wang and Chen’s MADM method [24] has the shortcomings that (1) it cannot distinguish the preference order
(PO) of alternatives in some cases due to the fact Wang and Chen'’s score function [24] of IVIFVs has the shortcoming that
it cannot distinguish IVIFVs in some cases and (2) the linear LP model constructed in Wang and Chen’s MADM method
[24] has the shortcoming that it will get an infinite number of solutions of the optimal weights of attributions when the
summation values of some columns in the transformed decision matrix (TDM) are the same. As a result, Wang and Chen’s
MADM method has the drawback that it gets different preference orders (POs) of alternatives when the summation values
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of some columns in the TDM are the same. Therefore, we need to propose a new MADM method in IVIF environments to
overcome the shortcoming of Wang and Chen’s MADM method [24].

In this paper, we propose a new method to deal with MADM problems in IVIF environments using the LP methodology
[4,21] and the proposed new score function and new accuracy function of IVIFVs for overcoming the shortcomings of Wang
and Chen’s MADM method [24]. The proposed MADM method offers us a very useful way to deal with MADM problems
under IVIF environments.

The rest of this paper is organized as follows. In Section 2, we briefly review basic concepts of IVIFSs [1], IVIFVs [27],
Wang and Chen’s score function [24] of IVIFVs and the interval-valued intuitionistic fuzzy weighted averaging (IVIFWA)
operators of IVIFVs presented in [25] and [27], respectively. We also propose a new score function and a new accuracy
function of IVIFVs. Moreover, we also propose a new ranking method of IVIFVs based on the proposed new score function
and the proposed new accuracy function of IVIFVs. In Section 3, we point out the drawbacks of Wang and Chen’s MADM
method [24] and use some examples to illustrate the drawbacks of Wang and Chen’s MADM method [24]. In Section 4,
we propose a new MADM method using the LP methodology and the proposed new score function and the proposed new
accuracy function of IVIFVs. The conclusions are discussed in Section 5.

2. Preliminaries

In this section, we briefly review basic concepts of IVIFSs [1], IVIFVs [27], Wang and Chen’s score function [24] of IVIFVs
and the IVIFWA operators of IVIFVs presented in [25] and [27], respectively. We also propose a new score function and a
new accuracy function of IVIFVs and propose a new ranking method of IVIFVs based on the proposed new score function
and the proposed new accuracy function of IVIFVs.

Definition 2.1 [1]. Let X = {x{,X2,...,%;} be the universe of discourse. An IVIFS A in X is represented by A=
{<xi. gz (x;), vz (x;) > |x; € X}, where 1 <i<n, uz(x;) and v;(x;) denote the membership degree and the non-membership
degree of element x; belonging to the IVIFS A, respectively, i (x;) :[,u/g(x,-), Mfi‘r(xi)], vz (%) :[Ug(x,-),vg(x,-)], 0<
nz (%) < M;{ (x)<1,0< vr x) < U/‘{ (x;) <1 and ,u;{ x) + vg (%) < 1. The hesitancy degree 7;(x;) of element x; belong-
ing to the IVIFS A is represented by 5(%;) = [nA‘(xi), ng(x,-)], where T x)=1- ,u;‘f(x,-) - vf‘{(xi), ng(xi) =1- nz (%) —
vA‘(xl-) and 1 <i<n.

In [27], the pair ([/LE(Xi), /L:‘:(x,-)], [UA_(X,'),U}\"(Xi)]) is called an IVIFV, where 0 < Mg(x,») < /L:‘:(x,») <1,0< v;(xi) <
Ug(xi) <1 and M}(X,-) + uA*(xi) <land1<i<n.
Definition 2.2 [24]. Let & = ([a~, a*], [b~, b™]) be an IVIFV, where [a~, a®] < [0, 1], [b-, b*] [0, 1] and a* +b*" < 1.
Wang and Chen’s score function Sy,c(&) of the IVIFV @ is defined as follows:
a + at+ ~atbt(1 —a — b") + vab-(1 — a* - b")

2 ,

where Sy (&) € [0, 1]. The larger the score value Syc(&) of the IVIFV &, the larger the IVIFV &.
However, Wang and Chen'’s score function Sy [24] of IVIFVs has the shortcoming that it cannot distinguish IVIFVs in
some cases.

Swe(@) =

(1)

Example 2.1. Let &; = ([0.5914, 0.6383], [0.1266, 0.2429]) and &; = ([0.5530, 0.6574], [0.1000, 0.2603]) be two dif-
ferent IVIFVs. According to Eq. (1), we can obtain Syc(&) = Swc(@;) = 0.6866. Thus, Wang and Chen’s score func-
tion Syc [24] shown in Eq. (1) cannot distinguish the IVIFVs &; = ([0.5914,0.6383], [0.1266, 0.2429]) and &; =
([0.5530, 0.6574], [0.1000, 0.2603]) in this situation.

In this paper, we propose a new score function Syyc and a new accuracy function Hyyc of IVIFVs to overcome the
shortcomings Wang and Chen’s score function Sy,¢ [24] of IVIFVs.

Definition 2.3. Let & = ([a~, a™], [b~, b*]) be an IVIFV, where [a~, at] < [0, 1], [b-, b*] [0, 1] and a* +b* < 1. The

proposed score function Syyc of the IVIFV & is defined as follows:

(@ + a’)(a + b)) — (b + b*) (@ + bY)
3 )

where Sywc(@) € [—1, 1]. The larger the score value Sy (&) of the IVIFV &, the larger the IVIFV &.
The proposed score function Syyc of IVIFVs has the following properties:

(2)

Snwe (@) =

Property 2.1. If the IVIFV & = ([a~, a*], [b~, b*]), where [a~, at]< [0, 1], [b-, b*] < [0, 1] and a* +b" <1, then
Sch(d) € [—1, ]]

Proof. If the IVIFV @ = ([1, 1], [0, 0]), then based on Eq. (2), we can get

1+ 1HA+0 - (0+0)(1+0) 2
2 )

Snwe (&) = =1.
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If the IVIFV & = ([0, 0], [1, 1]), then based on Eq. (2), we can get
0+0)0+ 1) — 1+ 1HO+1) -2

2 )
Therefore, we can get Syywc(@) € [-1, 1]. &

Snwe (@) = =-1.

Example 2.2. The same assumption as Example 2.1, where &; = ([0.5914, 0.6383], [0.1266, 0.2429]) and &; =
([0.5530, 0.6574], [0.1000, 0.2603]) are two different IVIFVs. Based on the proposed score function Sy, shown in Eq. (2),
we can get Sywc (@) = 0.2787 and Sywc (&) = 0.2299. Therefore, we can see that the proposed score function Syyc shown
in Eq. (2) has the advantage that it can overcome the drawback of Wang and Chen’s score function Sy, [24] to distinguish
the IVIFVs & and &, in this situation.

Definition 2.4. Let & = ([a~, a™], [b~, b*]) be an IVIFV, where [a~, at] < [0, 1], [b-, b*] [0, 1] and a* +b* < 1. The
proposed accuracy function Hyy,c of the IVIFV @ is defined as follows:
~ 1-a +a")l —a-b)+ 1 -b+ b)) - at- bt
Hnc (@) = ¢ )( ) + ¢ ) ( ) 3)
where Hywc(&) € [0, 1]. The larger the accuracy value Hywc (&) of the IVIFV &, the larger the IVIFV &.

In this paper, we propose a new ranking method of IVIFVs based on the proposed score function Sy and the proposed
accuracy function Hyyc, shown as follows.

Definition 2.5. Let &; and &, be any two IVIFVs, then

(1) If Sxwe(@1) < Sywe(@2), then @y < @.
(2) If Snwe(@1) = Snwe (@2), then
(1) If Hywc(@1) = Hywe(@2), then & = d&».
(2) If Hch(d]) < Hch(&z), then &1 < &2.
Definition 2.6 [25]. Let &;, @, ..., and @, be IVIFVs, where &; = ([a;, b;]. [c;. d;]). 1<i<n, [a, b;]<[0, 1], [¢;. di] €
[0, 1] and O < b; +d; < 1. The interval-valued intuitionistic fuzzy weighted averaging (IVIFWA) operator fyq of the IVIFVs
&1, @y, ..., and @&, is defined as follows:

fwig(@. ... an) = ([g7.&7] [h.h7]). (4)

where w; is the weight of IVIFV &;, 0 <w; <1, 1<iz<n YlL,wi=1,8 =YL, 04, g =YL wb, h™ =YL wic, ht
=" wd;,0<g <g"<1,0<h <ht<landg+h*<1.

Definition 2.7 [27]. Let &4, @y, ..., and &, be IVIFVs, where &; = ([a;, b;], [c;, d;]), 1 <i<n, [a;, b;] <0, 1], [¢;, d;] <
[0, 1] and O < b; +d; < 1. The IVIFWA operator fx of the IVIFVs &1, &>, ..., and &, is defined as follows:
f(@.@,....4n) = ([g7.87] [P.1]). (5)

where w; denotes the weight of the IVIFV &, O<w;<1, 1<iz<n, YL wj=1 g =1-[[L;1-a)%, g5 =1~
[T, (1 =b)®, h~ =T %, h*t =[]L,d“,0<g" <gt<1,0<h <ht<landgt+h*<1

3. Analyze the drawbacks of Wang and Chen’s MADM method

In this section, we analyze the drawbacks of Wang and Chen’s MADM method [24] shown as follows:

(1) In Step 1 of Wang and Chen’s MADM method [24], it uses Wang and Chen'’s score function Sy shown in Eq. (1) to
calculate the score values of the evaluating IVIFVs. Moreover, in Step 4 of Wang and Chen’s MADM method, it also
uses Wang and Chen’s score function Sy, shown in Eq. (1) to calculate the transformed values of the weighted evalu-
ating IVIFVs (WEIVIFVs). Because Wang and Chen’s score function Sy, has the shortcoming that it cannot distinguish
IVIFVs in some cases, Wang and Chen’s MADM method cannot distinguish the PO of alternatives in some cases.

(2) The LP model “maxM = Y}"I", Z,}:l (wj* x t;;)" constructed in Step 1 of Wang and Chen’s MADM method [24] has
the shortcoming that it will get an infinite number of solutions of the optimal weights of attributions when the
summation values of some columns in the transformed decision matrix (TDM) are the same [3].

In the following, we use some examples to illustrate the drawbacks of Wang and Chen’s MADM method [24].

Example 3.1. Let A;, Ay, A3 and A4 be four alternatives and let C;, G, and C; be three attributes. Assume that the IVIF
weights @, @, and @3 of the attributes C;, C; and C3 are shown as follows:

@1 = ([0.10, 0.40], [0.20, 0.55)),

@, = ([0.20, 0.50],[0.15, 0.45)),

@3 = ([0.25,0.60],[0.15, 0.38]).
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That is, y; = 0.10, y7 = 0.40, z; = 0.20, z; = 0.55, y; = 0.20, y7 = 0.50, z; = 0.15, z; = 0.45, y; = 0.25, y: = 0.60, z; = 0.15
and zgr = 0.38. Assume that the decision matrix (DM) D provided by the decision maker is as follows:

G G G
A ([0.40, 0.50],[0.30,0.40]) ([0.40,0.60],[0.20,0.40]) (]0.10,0.30],[0.50, 0.60])
B (d~) —Al ([0.53,0.70],[0.05,0.10])  ([0.60,0.63],[0.16,0.30])  ([0.49,0.70],[0.10, 0.20])
— MU/ 4x3 _A2 ([0.30, 0.601],[0.30,0.40]) ([0.50,0.60],[0.30, 0.40]) (]0.50,0.60],[0.10, 0.30])
Az ([0.70,0.80],[0.10,0.20])  ([0.60,0.70],[0.10,0.30])  (]0.30,0.40],[0.10, 0.20])
In the following, we use Wang and Chen’s MADM method [24] to obtain the PO of the alternatives A, A, A3 and A4, shown
as follows:
Step 1: Based on Eq. (1) and the DM D = (d}j)4x3 = ([ai‘j, a,f;], [bi‘j, b;fj])4x3, it computes the score value t;; of evaluating
VIFV d~ij, where b = a; + ag + /a,.*jb,.*j(l T —Zbi’j) + Jabn (1~ a,.*j - b;;)
t;1 = 0.5344, t1; = 0.5980, t13 = 0.2960,
t;1 = 0.6868, ty; = 0.6780, ty3 = 0.6828,
t31 = 0.5480, t3; = 0.5990, t33 = 0.6460,
ts = 0.7900, t4p = 0.7187, t43 = 0.4695.
Therefore, it obtains the TDM T, where

G G G

4, (05344 05980 0.2960

T (i), = Al 0.6868 0.6780 0.6828
i) ax3 AZ 0.5480 0.5990 0.6460
3\0.7900 0.7187 0.4695

Ay
Because the IVIF weights @, @, and @3 of the attributes C;, G, and C3, respectively, are as follows:
@ = ([y1.¥7] [ z]) = (0.10, 0.40]. [0.20. 0.55]).
@, = ([y3. 3] [z #]) = (10.20, 0.50], [0.15, 0.45]),
@3 = ([y3. 3] [ #5]) = (10.25, 0.60], [0.15, 0.38)),

,tijel0, 1], 1<i<4and 1< j <3, shown as follows:

based on the obtained TDM T = (t;;)43. it obtains the LP model: “maxM = Zle 2}11 (wj* x t;;)", where w;* is the optimal
weight of attribute C;, 1 < j <3, 0.10 < w* <0.80, 0.20 < w,* < 0.85, 0.25 < w3* <0.85 and w* + wr* + w3* =1.

Step 2: After solving the LP model “maxM = "¢ ; 33 (w;* x t;j)" obtained in Step 1, where 0.10 < w;* < 0.80, 0.20 <
wy* <0.85,0.25 < w3* <0.85 and w1* + wyr* + ws3* =1, it gets the optimal weights w*, w,* and ws* of the attributes C;,
G, and G, respectively, where w¢* = 0.1000, w,* = 0.6500 and w3* = 0.2500.

Step 3: Based on Eq. (5), the optimal weights w{*, @w,* and ws3* of the attributes C;, C; and G, respectively, where w* =
0.1000, w,* = 0.6500 and ws* = 0.2500, and the DM D = (dj})4.3 = (la;;. afl, [bj. bfiDa.s, it computes the WEIVIFV E

*

= ([c;. ¢f]. [d;. d]) of alternative A;, where ¢; =1 — ]'[L] 1- alfj)wf*. cr=1- ]'[?=1 1- a,f;)wf*. d: = ]'[?=1 b;jwj A=

]'[?:1 b:;wj*, O<c¢ <c¢f<1,0<d7 <d} <1,¢f +df <1,1<i<4and 1< j <3, shown as follows:
c; = 0.3360, cf =0.5296, di = 0.2619, df = 0.4427,
c; = 0.5680, cj =0.6562, d; =0.1266, df = 0.2429,
c; = 0.4829, cf =0.6000, d; = 0.2280, df = 0.3722,
c; = 0.5530, c; =0.6574, d; =0.1000, d; = 0.2603.
Therefore, it obtains the WEIVIFV E; of alternatives A;, where 1 < i < 4, shown as follows:
Ei = ([c7. ¢f]. [di. df]) = (103360, 0.5296]. [0.2619, 0.4427]),

( d;])
Ey = ([c3. ¢f]. [d5. df]) = ([0.5680, 0.6562], [0.1266, 0.2429]),
( 4

[c5. 5] [d5. d5]) = ([0.4829, 0.6000], [0.2280, 0.3722)),
Es=([c;. ¢f]- [ds. df]) = ([0.5530, 0.6574], [0.1000, 0.2603]).
Step 4: Based on Eq. (1), it computes the transformed value E; of the WEIVIFV E; = (( (o ci*], [d7. df]) of alternative A;,

— + +d+ - - —d- + +
G TGt cijd,.j(l T dl.j) + Cijdij“ - ¢ - dij)

where E; = and 1 <i <4, shown as follows:

E; =0.5342, E; = 0.6866, E; = 0.6144, E4 = 0.6866.
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Because E, = E4 > E3 > E1, we can see that it gets the PO “A, = A4 ~ A3 > A;” of the alternatives A;, Ay, A3 and A4. There-
fore, Wang and Chen’s MADM method [24] has the shortcoming that it cannot distinguish the PO of the alternatives A, and
A4 in this case.

Example 3.2. Let A, A, and A3 be three alternatives and let C;, C; and C3 be three attributes. Assume that the IVIF weights
@1, @, and @3 of the attributes C;, C; and C3 are shown as follows:

@1 = ([0.25,0.25],[0.25, 0.25)),

@, = ([0.35,0.35],[0.40, 0.40]),

@3 = ([0.30,0.30],[0.65, 0.65]).

Assume that the DM D provided by the decision maker is shown as follows:

C1 CZ C3
([0.37,0.50],[0.14,0.19])  ([0.51,0.54],{0.18,0.28])  ([0.11, 0.80], [0.17, 0.20])
b= (dy), = Az (10.30,0.36],[0.20,0.25])  ([0.60,0.70],[0.20,0.20])  ([0.47, 0.47],[0.50, 0.50])
([0.15,0.20], [0.45,0.50])  ([0.70,0.75],[0.05,0.10])  ([0.60, 0.60], [0.30, 0.30])

In the following, we use Wang and Chen’s MADM method [24] to obtain the PO of the alternatives Ay, A, and A3z, shown as
follows: B
Step 1: Based on Eq. (1) and the DM D = (d;j)343 = ([ai; af], [b,?]., b;;.])3x3, it computes the score value t;; of evaluating

ai+a++ a*b*(l—u - b)) + ab(l— 7bff.)

IVIFV d;j, where ;; = - u

,tj€0, 1, 1<i<3and 1 < j < 3, shown as follows:

G G G
A, /0.5458 0.6125 0.5990
T = (t,,)3x3 =A,| 04528 07047 0.4845
02772 07733 0.6424

Because the IVIF weights @, @, and @3 of the attributes C;, C, and Cs, respectively, are as follows:

= (1. ¥7] [ #]) = (1025, 0.25], [0.25, 0.25]),
@2 = ([y3. ¥3]. [z, 23]) = (1035, 0.35], [0.40, 0.40)),
@3 = ([y5. ¥5]. [z #]) = (1030, 0.30], [0.65, 0.65]),
based on the obtained TDM T = (t;;)33, it gets the LP model “maxM = ZL Z?ﬂ (wj* x t;;)", where w;* is the optimal
weight of attribute C;, 1 < j <3, 0.25 < w;* <0.75, 0.35 < wp* < 0.60, 0.30 < w3* < 0.35 and w* + wr*+ w3* =1.
Step 2: After solving the LP model “maxM = Y} ; >} ; (@;* x t;;)" obtained in Step 1, where 0.25 < w;* < 0.75, 0.35 <
w7r* <0.60, 0.30 < w3* <0.35 and w1* + wy* + w3* =1, it gets the optimal weight w{*, w,* and ws* of the attributes C;,
G, and Gz, respectively, where w;* = 0.2500, w,* = 0.4500 and ws3* = 0.3000.

Step 3: Based on Eq. (5), the obtained optimal weights w{*, w;* and ws* of the attributes C;, C; and C3 obtained in Step
2, respectively, where w;* = 0.2500, w,* = 0.4500 and w3* = 0.3000, and the DM D = (dij)3x3 = ([ai; a*] [bu bu])3x3‘

it computes the WEIVIFV E = ([e;» ¢f], [d7, df]) of alternative A;, where ¢; =1- H?:] 1- a,.j) i, ¢f=1-
M (1-a))™", d; :]‘[?zlb;jwj*,d;r:]‘[?’zlbrjwj*,Ogc; <¢ <1,0<d7 <df <1,0<c¢/+df <1,1<i<3and1<j<
3, shown as follows:

Er = ([c7. ¢f]-[d;. di]) = ([0.3759, 0.6342], [0.1662, 0.2297]),
E; = ([¢;. ¢5].[d;.d5]) = ([0.4994, 0.5699], [0.2633, 0.2784]),
Es = ([c5.¢f]. [d5. d5]) = ([0.5757, 0.6150], [0.1482, 0.2079]).

Step 4: Based on Eq. (1), it computes the transformed value E; of the WEIVIFV E; = (c;, c,.*], ld, di*]) of alternative

ci'.+c++/c+d+(1—c —d)+ cd(l ¢ = di)
A, where E; = 2 5 .Y E; [0, 1] and 1 <i < 3, shown as follows:
E; = 0.6094, E, = 0.6094, E; = 0.6706.

Because E3 > E; = E; , it gets the PO "A; - A; = Ay" of the alternatives Ay, A, and As. Therefore, Wang and Chen’s MADM
method [24] has the shortcoming that it cannot distinguish the PO between the alternatives A; and A, in this case.

Example 3.3. Let A, Ay, A3 and A4 be four alternatives and let C;, G, and C; be three attributes. Assume that the IVIF
weights @1, @, and @3 of the attributes C;, C, and C3 are shown as follows:

@1 = ([0.10, 0.40], [0.20, 0.55]),
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@, = ([0.20, 0.50], [0.15, 0.45]),
@3 = ([0.25, 0.60], [0.15, 0.38]).

Assume that the DM D provided by the decision maker is shown as follows:

G G G
A, {([0.40, 0.50], [0.30, 0.40]) ([0.41, 0.60], [0.10, 0.30]) ([0.32, 0.60], [0.27, 0.40])
Bo(d. A, | (030, 0.70], [0.05, 0.10]) ([0.50, 0.60]. [0.10, 0.30]) ([0.42, 0.63], [0.12, 0.21])
= (45)4.5= a5 | ([0.32, 0.60] [0.20. 0.40]) ([0.40. 0.50] [0.20. 0.40]) ([0.40, 0.60] [0.10. 0.33])
A\ ([0.60, 0.70], [0.15, 0.20]) ([0.40, 0.60], [0.14. 0.20]) ([0.41, 0.60], [0.11, 0.29])

In the following, we use Wang and Chen’s MADM method [24] to obtain the PO of the alternatives Aq, A,, A3 and A4, shown
as follows: _
Step 1: Based on Eq. (1) and the DM D = (d;j)4x3 = ([ai af], [blfj, blfrj])4x3, it computes the score value t;; of evaluating

au+a++ a*b*(l—u - b)) + ab(l— 7bxfr.)
IVIFV d,J, where tij = 5 . tij € [0, 1],1<i<4and 1 < j <3, shown as follows:
G G G
A 0.5344 0.6191 0.5604
1

T— (t) _A 0.5982 0.6460 0.6266
~Ui)a3 =721 05776 0.5536  0.6182
3\ 0.7118 0.6033 0.6168

Because the IVIF weights @7, @, and @3 of the attributes C;, C, and Cs, respectively, are shown as follows:
an = ([y7.¥7]. [2- #]) = ((0.10, 0.40], [0.20, 0.55]),
@2 = ([y3.¥5]. [z #]) = (10.20, 0.50], [0.15, 0.45]),
@3 = ([y5. 3] [ 25]) = (10.25. 0.60]. [0.15, 0.38)),

based on the obtained TDM T = (t;;)43, it gets the LP model “maxM = 2?11 Z?Zl (wj* x t;;)", where w;* is the optimal
weight of attribute C;, where 1 < j <3, 0.10 < @w;* < 0.80, 0.20 < wp* < 0.85, 0.25 < w3* < 0.85 and w* + wr* + w3* =1.

Step 2: From the obtained TDM T = (tij)4><3v we can see that t11 +ty1 +t31 +tgg =tip + by +t3p +tgp =t13 + b3 + 33 +
t43 = 2.4220. Therefore, the LP model “maxM = Y, Y7 _; (w;* x t;;)" becomes @1* x (tyy + by +t31 +1ta1) + @o* x (t12 +
by +t33 +tg) + w3* x (b3 + 13 +1t33 +43) = w1* x 24220 + wyr* x 24220 + w3* x 24220 = (w1* + wy* + w3*) x
2.4220 = 2.4220, where w1* + wo* + w3* = 1. That is, in this LP model, it will obtain an infinite number of optimal weights
w1*, wo* and ws* of the attributes C;, C; and C3, respectively, which satisfies w{* + wy* + w3* = 1. For example, it can obtain
the following two sets of optimal weights w{*, w,* and ws3* of the attributes Cy, C; and C3, respectively:

(1) wy* = 0.3000, w,* = 0.4000, ws* = 0.3000,
(2) wy* = 0.1000, w,* = 0.2000, w3* = 0.7000,

which satisfies w1* + @ * + w3* =1.
_Step 3: For the optimal weights w;* =0.3000, w;* =0.4000 and ws* = 0.3000, based on Eq. (5) and the DM D=
(dij)ax3 = ([al.;, af] [bT. bf])4X3, it computes the WEIVIFV E; = (e, ¢l [d* d]) of alternative A;, where ¢; =1—

[T (- )™, ¢ = 1T (1 —a®, di =TT, b, df =TT, by, 0<cy <cf<1,0<d <df <1, 0=<c +
dlfsland15154 shown as follows:

(
(
(
(

[c1. 7] [dr. df]) = ([0.3812, 0.5723], [0.1873, 0.3565]),
[c3. 5] [d5. d5]) = ([0.4217, 0.6416], [0.0858, 0.1939]),
[c5. ] [d5. di]) = (103770, 0.5627], [0.1625, 0.3776]),
[cz. ;] [da. di]) = ([0.4714, 0.6331], [0.1330, 0.2236)).
In the same way, for the optimal weights w{* = 0.1000, w,* = 0.2000 and ws* = 0.7000, it gets
([er. ¢f]- [d7. df]) = (10.3473, 0.5910], [0.2237, 0.3776)).
([e3- 3] [d5. df]) = ({04263, 0.6320], [0.1060, 0.2094]),
([e5. <] [d5. df]) = (103924, 0.5817], [0.1231, 0.3496]),
([cs- <] [ds- df]) = (10.4306, 0.6113], [0.1191, 0.2594]).

Step 4: For the optimal weights w;*=0.3000, w,*=0.4000 and ws3*=0.3000, based on Eq. (1), it
computes the transformed value E; of the WEIVIFV E;=([c;, ¢f], [d;, df]) of alternative A;, where E; =

h'Jz h‘n
([

C
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4 ¢t + fetdt(1 — ¢ —do) + Jendn (1 = ¢ — df)
b0 Vi I v YU and 1 <i < 4, shown as follows:

E1 =0.5837, E;, = 0.6341, E5; = 0.5834, E; = 0.6446.

Because E4 > E; > Eq > Es, it gets the PO “A4 = Ay > Ay > A3” of the alternatives Ay, A, Az and A4. In the same way, for the
optimal weights w{* = 0.1000, w,* = 0.2000 and ws3* = 0.7000, it gets

E1 =0.5748, E; = 0.6311, E3 = 0.6039, E4 = 0.6253.

Because E; > E4 > E3 > Eq, it gets the PO “A, > A4 > A3 = A;” of the alternatives A;, A, Az and A4. In other words, Wang and
Chen’s MADM method [24] obtains two different POs of the alternatives A, Ay, Asand A4 in this case, which is unreason-
able.

4. A new MADM method using the LP methodology and the proposed new score function and the proposed new
accuracy function of IVIFVs

_ Assume that Ay, Ay, ..., and Ap are m alternatives and assume that Gy, G, ..., and G, are n attributes. Let the DM D=
(dij)mxn = ([ai‘j, a,f;], [bi‘j, b;;])mxn provided by the decision maker be represented by IVIFVs. Let the weight of attribute C;
provided by the decision maker be represented by an IVIF weight @;, where @; = ([y]?, y]f], [ZJT, z;r]) and 1 < j <n. The
proposed MADM method is shown as ~follovgs:

Step 1: Based on Eq. (2) and the DM D = (d;j)mxn = ([alfj, a$], [blfj, b;;-])mxn- build the transformed decision matrix (TDM)
(a7 + af)Cag+ by) — (b+bf) (afi+bf)

T= (tij)mxnv where tij = 5
(tij)mxn, construct the following LP model [4]:

maxM = ZZ (a)j* X tij)’ (6)

i=1 j=1

ytjel[-1, 1, 1<i<m and 1 < j <n. Based on the TDM T =

where w;* is the optimal weight of attribute C;, yi = wi*<1- z;, 1<j<nand ZL] wi* =1

Step 2: If the summation values of the elements in each column of the TDM T = (t;j)mxn are different, then solve the
LP model obtained in Step 1 to obtain the optimal weight w;* of attribute C;, where 1 < j <n. Otherwise, if there are
s columns in the obtained TDM T = (tij)mxn whose summation values for these s columns are the same and there are
(n—s) columns in the obtained TDM T = (t;;)mxn Whose summation values of the columns are different, where 2 <s <n,

Yt =Yty ==Y tg=rand X" tisy1y # Ding tise2) # o # Yinq tins then do the following sub-steps:

Step 2.1: Compute the standard deviation oj of the values at the jth column of the obtained TDM T = (&) mxn, where
1 < j <s, shown as follows:

mo(6 - n)
o - /# )

where p = 5 3t = i iyt = = g iy bis = -

Step 2.2: Sort the obtained standard deviations o4, 03, ---, and o5 in an ascending sequence. Assume that the ascend-
ing sequence of the obtained standard deviations o4, 03, ..., and o5 is 07 < 0y < --- < 0.

Step 2.3: Add the small delta values 81, &,, ..., and & to the elements tqq, tio, ..., and t;s of the first column, the
second column, ---, and the sth column of the obtained TDM T = (t;;)mxn, respectively, where 2 <s <n (Note: In
this paper, we let the small delta values 8; = 0.0001, §, = 0.0002, ---, and &s = 0.0001 xs), to get the modified
TDM T’ = (t{j)mxn, where the other elements in the modified TDM T’ = (t{j)mxn are the same as the ones of the TDM
T = (tij)mxn.

Step 2.4: Based on the modified TDM T’ = (t,‘/j)mxnv reconstruct the following LP model:

maxM =" (o) xt})), (8)

i=1 j=1

where w;* is the optimal weight of attribute C;, yi = wi* <1 -z, 1<j<nand 23‘:1 wi*=1.
Step 2.5: Solve the LP model shown in Eq. (8) to get the optimal weight w;* of attribute C;, where 1 < j <n.

Step 3: Based on Eq. (4), the obtained optimal weight w;* of the attribute C;, where 1 < j <n, and the DM D= (‘ijj)mxn
= (la. af]. [bj. bjDmxn, aggregate the evaluating IVIFVs diy, dip, -+ . and dj, into the WEIVIFV E; = ([c}. ¢f]. [d. df])
of alternative A;, where ¢, = Y%, wj*ag, =X cuj*alf;, di = Y, wj*bi, df =X, wj*bi*j, O<c¢ =<¢f<1,0=<d; <
d;rf],OEC:r+di+§],0<wj*§],15i§my]§j§nand Z?:le*:]'



152 C.-Y. Wang, S.-M. Chen/Information Sciences 438 (2018) 145-155

Step 4: Based on Eq. (2), calculate the transformed value E; of the WEIVIFV E; = (7, Ci*], ld, di*]) of alternative A;, where

- + - =Y _ (d—+dt) (ctedt

E = (G + )G+ 4, )2 (@ +d7) (G +d; ), E; e [-1, 1] and 1 <i < m. The larger the transformed value E;, the better the PO of

alternative A;, where 1 <i <m. IfE, =E;, where 1 <k <m, 1 <l <m and k # [, then based on Eq. (3), calculate the accuracy
~ _ _ . (I=c, + ¢H(A=- ¢, — dy) + (1—=d +d") (1-¢f—dF

value F of the WEIVIFV E;, = ([, ¢/], [d,, d/]) of alternative A, where F, = k& bk k& k_k

F,e[0, 1] and 1 <k <m. In the same way, compute the accuracy value F of the WEIVIFV E, = ([ cl+], ld;, dl+]) of

e Y1— ¢ — d- —d—+dt _ct_d+

alternative A;, where F, = Umq vz g4 ); (dy +d) 07q =4, ), Fel0, 1],1<l<mand k #1. If F, > F, then the PO
of alternatives Ay and A, is: Ay > A;, where 1 <k <m, 1 <l <m and k #[; if f, = F, then the PO of atternatives A, and A, is
Ay =A;, where 1 <k<m,1<I<mand k #1; if F, <F, then the PO of alternatives A, and A, is: A, <A;, where 1 <k <m,

1<l<mandk#L

Example 4.1. The same assumptions as those in Example 3.1. The procedure of the proposed MADM method is shown as
follows:

Step 1: Based on Eq. (2) and the DM D = (d~ij)4X3 = ([a,.; a+] [b‘ b+])4x3, we can get the score value t;; of evaluating

= Y as+ b)) — (br+bf T 4+bT
IVIFV d,j, where t;; = (@ + 4t ”)2 By thip) ”), tije[-1, 1], 1<i<4and 1 < j < 3, shown as follows:

ti1 =0, t12 =0, t13 = —0.3750,

ty1 = 0.2967, ty; = 0.2535, ty3 = 0.2160,

t33 = —0.0800, t3; = 0.0900, t33 = 0.1500,

ts = 0.4500, t4p = 0.2550, t43 = 0.0500.
Therefore, we can obtain the TDM T, where

G G G
A 0 0 —0.3750
T=(t),, = A 02967 02535 0.2160
) ax3 AZ —0.0800 0.0900 0.1500
Ai 0.4500 0.2550 0.0500
Because the IVIF weights @1, @, and &3 of the attributes C;, C, and C3, respectively, are shown as follows:

= ([y7. ¥{] [z #]) = ([0.10, 0.40], [0.20, 0.55]),

@ =([y2. ¥§]. [z, #]) = ((0.20, 0.50], [0.15, 0.45]),

@3 = ([y3. ¥3]. [z. #]) = (1025, 0.60]. [0.15, 0.38]),

based on the obtained TDM T = (t;;)4,3, we can get the LP model “maxM = ZL] ZL] (wj* x t;j)", where w{*, w;* and ws*
are the optimal weights of the attributes Cy, C; and C3, respectively, 0.10 < w* < 0.80, 0.20 < w,* < 0.85, 0.25 < w3* < 0.85
and w1* + wy* + w3* =1.

Step 2: Because the summation values of the elements in each column of the TDM are different, where Z,‘-‘zl tj = 0.6667,
Z;‘zl tip = 0.5985 and Z;L] tiz = 0.0410, after solving the LP model “maxM = Zl‘»‘zl Z?zl (wj* x t;;)" obtained in Step 1,
where 0.10 < w¢* < 0.80, 0.20 < wy* < 0.85, 0.25 < w3* < 0.85 and w* + wy* + w3* =1, we can get the optimal weights
w1*, wy* and ws* of the attributes C;, G, and C3, respectively, where w;* = 0.5500, w,* = 0.2000 and w3* = 0.2500.

Step 3: Based on Eq. (4), the DM D = (d~,-j)4x3 = ([ai} alf;], [blfj, bi*j])4x3 and the optimal weights w:*, w,* and ws* of
the attributes C;, C; and C; obtained in Step 2, respectively, where w{* = 0.5500, w,* 0 2000 and a)3* = 0.2500, we can
obtain the WEIVIFV E; = (7. ¢f], [df, df]) of alternative A;, where ¢, Z] 1 @5, Z] 1 wj*a 1,, dr = Z?:l a)j*bl?j,
df :Z]Z]a)j*bi*j, 0<c¢ <¢'<1,0=<d7 <df<1,0=<c¢+df <1and 1<i<4, shown as follows:

Ev = ([c7. ¢f]. [d7. df]) = ([0.3250, 0.4700], [0.3300, 0.4500]),
E; = ([c3. ¢f]. [d3. d3]) = ([0.5340, 0.6860], [0.0845, 0.1650]),
Es = ([c5. ] [d5.d5]) = ([0.3900, 0.6000]. [0.2500, 0.3750]).
Es=([cz. <f] [ds.d}]) = ([0.5800, 0.6800], [0.1000, 0.2200]).

Step 4: Based on Eq. (2), we can compute the transformed value E; of the WEIVIFV E; = ([c;, clff], ld, d,.+]) of alternative
- + - =V (d—+dF) (c++dt
Aiv where Ei _ (Ci + ¢ )( G+ di ; (di +d1. ) (Ci +di ),

E; = —0.0984, E, = 0.2711, E3 = 0.0121, E4 = 0.2844.

Eie[-1, 1] and 1 <i < 4, shown as follows:
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Because E4 > E; > E3 > Eq, we can see that the PO of the alternatives A;, A,, Asand Ay is: Ay ~ Ay >~ A3 = Aq. It is obvious
that the proposed MADM method can distinguish the PO between the alternatives A, and A4, whereas Wang and Chen'’s
MADM method [24] cannot distinguish the PO between the alternatives A, and A4, as shown in Example 3.1. Therefore, the
proposed MADM method can overcome the shortcoming of Wang and Chen’s MADM method [24] in this case.

Example 4.2. Let A, A, and A3 be three alternatives and let C;, C; and C3 be three attributes. Assume that the IVIF weights
@1, @, and @3 of the attributes C;, G, and C3 are shown as follows:

@, = ([0.25, 0.25], [0.25, 0.25]).
@, = ([0.35, 0.35], [0.40, 0.40]),
@3 = ([0.30, 0.30], [0.65, 0.65]).

Assume that the DM D provided by the decision maker is shown as follows:
C1 CZ C3

i ([0.45, 0.66], [0.15, 0.20]) ([0.50, 0.70], [0.13, 0.28]) ([0.30, 0.80]. [0.16, 0.20])
b = (dyj), , =A2( ([0.30, 0.48], [0.20. 0.25]) ([0.60, 0.70], [0.20, 0.20]) ([0.45, 0.47]. [0.50, 0.50])
i ([0.15, 0.20], [0.45, 0.50]) ([0.70, 0.75], [0.05, 0.10]) ([0.60, 0.60], [0.30, 0.30])

The procedure of the proposed MADM method is shown as follows:
Step 1: Based on Eq. (2) and the DM D = (d;j)3 « 3 = ([alfj, alf;], [blfj, bi*j])3 « 3, We can compute the score value t;; of
(a5 + alf;)( ag+ by — (bi’j+bi+j) (a;;er;;)

evaluating IVIFV dzr where t;; = > tijel-1, 1], 1<i<3and 1 < j < 3, shown as follows:
G G G
T— (t) Ay 0.1825 0.1771 0.0730
— /3 x37 A, [0.0308 0.3400 —0.0480).
—0.2275 0.4800 0.2700

Because the IVIF weights @4, @, and @3 of the attributes C;, C; and C3, respectively, are shown as follows:
= ([y1.¥7] [ z]) = (10.25. 0.25]. [0.25, 0.25)),
@ = ([y3.¥3] [5- ]) = (10.35. 0.35]. [0.40, 0.40]).

@3 = ([y3.¥§]. [z #]) = (10.30, 0.30], [0.65, 0.65]).

based on the obtained TDM T = (t;;)33, we can get the LP model “maxM = 2,3:1 Z?ﬂ (wj* x t;;)", where w1*, @;* and w3*
are the optimal weights of the attributes C;, C; and G, respectively, 0.25 < w;* < 0.75, 0.35 < w,* < 0.60, 0.30 < w3* < 0.35
and w1* + wr* + w3* =1.

Step 2: Because the summation values of the elements in each column of the TDM are different, where Z?:] th =
—0.0142, Y7t =0.9971 and Y} t;3 = 0.2950, after solving the LP model “maxM =Y} ; ¥} (@;* x t;;)" obtained in
Step 1, where 0.25 < w* < 0.75, 0.35 < w,* < 0.60, 0.30 < w3* < 0.35 and w* + wy* + w3* =1, we can get w;* = 0.2500,
wy* = 0.4500 and w;* = 0.3000. )

Step 3: Based on Eq. (4), the DM D = (dij)3x3 = ([ai}, ag], [b;j, b;;.])3x3 and the optimal weights w1*, w,* and ws* of the
attributes Cq, G, and C3 obtained in Step 2, respectively, where w* = 0.2500, a)z = 0.4500 and a)3* = 0.3000, we can get
the WEIVIFV E; = ;. cl.*], ldr, di*]) of alternative A;, where ¢; Z] 1 wj*a i 1 ZJ 1wj*a l.., - = Z§=1 a)j*blfj, dlfr =
Z;’:l b, 0= =¢f <1,0=<d; =<df <1,0=c¢f +df <1and 1 <ix<3, shown as follows:

Er = ([¢7. cf]. [d7. df]) = ([0.4275, 0.7200], [0.1440, 0.2360]).
E; = ([c3. ], [d. d5]) = ([0.4800, 0.5760], [0.2900, 0.3025]),
Es = ([c5. ¢5]. [d5. d5]) = ([0.5325, 0.5675], [0.2250, 0.2600]).
Step 4: Based on Eq. (2), we can compute the transformed value E; of the WEIVIFV E; = (7, cl.+], ld, d;f]) of alter-
- + - =Y _ (d—+dt) (ctedt
native A;, where E; = G +g)G+d )2 d +d) (74, ),
E; =0.1463, E; = 0.1463, E3 = 0.2160.

Because E3 > E; = E;, based on Eq. (3), we can compute the accuracy value F, of the WEIVIFV E; = ([c;
(1-c, +c+)(l—c d)+(1 d+d*)(l c

Eie[-1, 1] and 1 <i < 3, shown as follows:

= ¢l [dr, df]) of

alternative A;, where F, = , . €l0, 1] and 1 <k < 2. That is, F; =0.3009 and
F, =0.1875. Because F; > F, we can get the PO of the alternatives: A3 > A1 > A;.

Example 4.3. Let Aq, Ay, A3 and A4 be four alternatives and let Cy, G, and C3 be three attributes. Assume that the IVIF
weights @1, @, and @3 of the attributes C;, G, and C3 are shown as follows:

@ = ([0.10, 0.40], [0.20, 0.55]).
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@, = ([0.20, 0.50], [0.15, 0.45]),
@3 = ([0.25, 0.60], [0.15, 0.38]).

Assume that the DM D provided by the decision maker is shown as follows:

C C C
A; /(1032 0.51], [0.34, 0.43]) ([0.41, 0.60], [0.10, 0.30]) ([0.41, 0.60], [0.19, 0.40])
5_ (i) A (1032 075] [0.03, 0.11]) ([0.51, 0.60], [0.10, 0.30])([0.42, 0.70], [0.10, 0.21])
= ( u)4X3—A3 (10.42, 0.60], [0.29, 0.40]) ([0.40, 0.50], [0.20, 0.40]) ([0.45, 0.60], [0.10, 0.33])
A4 \ ([0.61, 0.70], [0.08, 0.22]) ([0.40, 0.60], [0.14, 0.20]) ([0.45, 0.70], [0.10, 0.29])

The procedure of the proposed MADM method is shown as follows:
Step 1: Based on Eq. (2) and the DM D = (d~,-j)4x3, we can construct the TDM T = (t;j)4x3, shown as follows:
G G G
A; /—0.0880 0.0776 0.0080
T =(t),, ,=4A2( 01271 0.1585 0.1501
As| 0.0171 0 0.0888
A4\ 03139 0.1340 0.1232

Because the IVIF weights @, @, and @3 of the attributes C;, C; and C3, respectively, are shown as follows:
an = ([y1.¥7] [#- #]) = ([0.10, 0.40], [0.20, 0.55]),

2= ([y2. %3] [z #]) = (1020, 0.50], [0.15, 0.45)),

s = ([v5. 93] [ 2]) = (1025, 0.60], [0.15, 0.38]),

based on the obtained TDM T = (t;j)443, we can get the LP model “maxM = ZL] Z?ﬂ (wj* x t;j)", where w1*, wp* and w3*
are the optimal weights of the attributes C;, G, and C3, respectively, 0.10 < w{* < 0.80, 0.20 < w,* < 0.85, 0.25 < w3* < 0.85
and w1* + wy* + w3* =1.

Step 2: Because the summation values of the elements in each column of the TDM are the same, where Z;; th = Zf‘ﬂ tip =
Z?ﬂ ti3 = 0.3701, we do the following sub-steps:

S

S

Step 2.1: After calculating the standard deviation o; of the jth column of the obtained TDM T = (t;j)4x3, Where 1 <
j <3, we can get

o1 =0.2609, o0, =0.1364, o3 =0.1234.

Step 2.2: After sorting the standard deviations o7, 0, and o3 in an ascending sequence, we can get 03 <0y <07.

Step 2.3: After adding the delta values 0.0001, 0.0002 and 0.0003 to the first elements of ty3, t;» and ty; of the
third column, the second column and the first column of the TDM T = (t;j)443, respectively (Note: In this pa-
per, we let §;=0.0001, let ,=0.0002 and let 33 =0.0003), we can get the modified TDM T’ = (t';j)43, where
t}3 =t13 +0.0001 = —0.0877, ], = t12 +0.0002 = 0.0778, t}; = t;; +0.0003 = 0.0081 and the other elements in the
modified TDM T’ = (ti/j)4X3 are the same as the ones of the TDM T = (t;;)4.3, shown as follows:

G G G
Ay (-0.0877 0.0778 0.0081
T'=(t;), ., ;=4 01271 0.1585 0.1501
As| 00171 0 00888
As\ 03139 0.1340 0.1232

Step 2.4: Based on the modified TDM T’ = (t';j)4x3, we can get the LP model “maxM = 2,4:1 Zf:1 (wj* x t,.’j)", where
w;* is the optimal weight of attribute C;, where 1 <j <3, 0.10 < @w;* < 0.80, 0.20 < w,* < 0.85, 0.25 < w3* < 0.85
and Z?zl w;* = 1. After solving the LP model “maxM = Zle Z?ﬂ (wj* x t{j)", where 0.10 < w{* < 0.80, 0.20 < wy* <
0.85, 0.25 < w3* <0.85 and w* + wy*+ ws* =1, we can get the optimal weights w{*, w,* and ws* of the at-
tributes C;, G; and Gz, respectively, where w;* = 0.5500, w,* = 0.2000 and w3* = 0.2500.

Step 3: Based on Eq. (4), the DM D = (d~,-j)4x3 = ([alfj, alf;], [blfj, bi*j])4x3 and the optimal weights w:*, w,* and ws3* of
the attributes C;, G, and C3; obtained in Step 2, respectively, where w{* = 0.5500, w,* = 0.2000 and ws3* = 0.2500, we can
obtain the WEIVIFV E; = (7> ¢f], [d;, d}f]) of alternative A;, where ¢; = Z?:l wj*a, ¢ = Z?ﬂ wﬁa%, dr = Z?:l a)j*bl?j,
df :Z?ﬂwj*bi*j, O<c¢ =<¢'<1,0=<d <d <1,0=<c¢/ +d <1and 1<ix<4, shown as follows:

Er = ([¢7. cf]. [d7. df]) = ([0.3605, 0.5505], [0.2545, 0.3965]).

Ey = ([c3. &3], [d. d5]) = ([0.3830, 0.7075], [0.0615, 0.1730]),

Es = ([c5. cf]. [d5. d5]) = ([0.4235, 0.5800], [0.2245, 0.3825)),
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Es = ([cz.cf]. [da. d5]) = ([0.5280, 0.6800], [0.0970, 0.2335]).

Step 4: Based on Eq. (2), we can calculate the transformed value E; of the WEIVIFV E; = (¢, c;r], ld7, d,.+]) of alternative A;,
(c; +¢H) (¢ +d7)—(d] +dH) (¢} +d])
2

where E; =
E; = —-0.0281, E, = 0.1391, E3 = 0.0330, E4 = 0.2265.

Because E4 > E; > E3 > E1, we can see that the PO of the alternatives A, Ay, Asand Ay is: Ay ~ Ay ~ A3 >~ A;.

,E;e[-1, 1] and 1 <i < 4, shown as follows:

5. Conclusions

In this paper, we have proposed a new MADM method using the LP methodology and the proposed new score func-
tion and the proposed new accuracy function of IVIFVs to overcome the shortcomings of Wang and Chen’s MADM method
[24] for dealing with IVIF MADM problems. The proposed MADM method can overcome the shortcomings of Wang and
Chen’s MADM method [24], which has the shortcomings that it cannot distinguish the preference orders (POs) of alternatives
in some circumstances and it gets different POs of alternatives due to the fact that it gets an infinite number of solutions of
the optimal weights of attributes when the summation values of some columns in the transformed decision matrix (TDM)
are the same. Granular computing [15-17] is a problem solving method that can be used to deal with MADM problems
[10,13,14,19,23] and multiple attribute group decision making (MAGDM) problems [8,9,11,12,18,20]. In granular computing,
decision makers can express their evaluating values more flexibly by using fuzzy sets, rough sets, vague sets or intervals. It
is worth of future research to use granular computing techniques to further develop MADM methods and MAGDM methods.
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